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Abstract

BACKGROUND: Precision spraying of synthetic herbicides can reduce herbicide input. Previous research demonstrated the
effectiveness of using image classification neural networks for detectingweeds growing in turfgrass, but did not attempt to dis-
criminate weed species and locate the weeds on the input images. The objectives of this research were to: (i) investigate the
feasibility of training deep learning models using grid cells (subimages) to detect the location of weeds on the image by iden-
tifying whether or not the grid cells contain weeds; and (ii) evaluate DenseNet, EfficientNetV2, ResNet, RegNet and VGGNet to
detect and discriminate multiple weed species growing in turfgrass (multi-classifier) and detect and discriminate weeds
(regardless of weed species) and turfgrass (two-classifier).

RESULTS: The VGGNetmulti-classifier exhibited an F1 score of 0.950 when used to detect common dandelion and achieved high
F1 scores of ≥0.983 to detect and discriminate the subimages containing dallisgrass, purple nutsedge and white clover growing
in bermudagrass turf. DenseNet, EfficientNetV2 and RegNet multi-classifiers exhibited high F1 scores of ≥0.984 for detecting
dallisgrass and purple nutsedge. Among the evaluated neural networks, EfficientNetV2 two-classifier exhibited the highest
F1 scores (≥0.981) for exclusively detecting and discriminating subimages containing weeds and turfgrass.

CONCLUSION: The proposedmethod can accurately identify the grid cells containingweeds and thus precisely locate the weeds
on the input images. Overall, we conclude that the proposed method can be used in the machine vision subsystem of smart
sprayers to locate weeds and make the decision for precision spraying herbicides onto the individual map cells.
© 2022 Society of Chemical Industry.
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1 INTRODUCTION
Turfgrass is a form of vegetation cover in urban landscapes, includ-
ing athletic fields, commercial areas, institutional lawns, golf courses,
residential lawns and parks. Weeds are troublesome in turfgrass
because they compete for sunlight, nutrients and water, reducing
turf aesthetics and functionality. Weed management in turfgrass
relies predominantly on herbicides broadcast-applied over the turf-
grass, including the areawithoutweeds.1,2Many herbicides currently
used in turfgrass pollute the environment.3 For example, atrazine, a
photosystem II inhibiting herbicide, is used widely for weed control
in warm-season turfgrasses,4,5 but it is one of the most frequently
detected herbicides in underground water.3,6 Monosodium methy-
larsenate is one of the few effective herbicides for controlling
difficult-to-control weeds such as dallisgrass (Paspalum dilataum
Poir.) in golf courses;7–9 however, in the United States, only a single
application is permitted to be used in newly constructed golf courses
or used as spot-application as a consequence of concern over its
contamination of groundwater.10,11

Machine vision-based precision herbicide application can sub-
stantially reduce herbicide input, thereby mitigating the adverse
impact on the environment and reducing weed control cost.12,13

Accurate weed detection is a prerequisite for automatic weed

control with smart sprayers.13 Previous studies documented a
variety of machine vision technologies, such as fluorescence,14

LiDar sensor,15 hyperspectral imaging16,17 and spectral reflec-
tance18,19 for weed detection. In recent years, deep learning, par-
ticularly deep convolutional neural networks (DCNNs), has
demonstrated extraordinary capabilities in object detection and
image classification,20,21 and is employed for real-time weed
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detection.13,22,23 Recent studies documented that DCNNs can
effectively detect weeds in various cropping systems, such as corn
(Zea mays L.),24 soybean (Glycine max L. Merrill),24,25 and plastic-
mulched small fruiting and vegetable crops.26,27 Sharpe et al.
performed goosegrass (Eleusine indica L.) detection in strawberry
(Trifolium fragiferum L.) and tomato (Solanum lycopersicum L.) with
tiny YOLO-v3.28 Sivakumar et al. reported that Faster R-CNN reli-
ably identified late-season weeds in soybean fields.29 Recently,
Jin et al. trained and evaluated the performance of YOLO-v3,
CenterNet and Faster R-CNN to detect bok choy (brassica rapa
spp. chinensis) and identify all other green objects as weeds.30

The feasibility of using DCNNs for weed detection in turfgrass
was first documented by Yu et al.,31 who reported that DetectNet
effectively detected cutleaf evening-primrose (Oenothera laci-
niata Hill) growing in bahiagrass (Paspalum notatum Flugge),
whereas VGGNet effectively detected various broadleaf weeds
growing in dormant bermudagrass (Cynodon dactylon L. Pers.).
Later, Yu et al.32,33 evaluated various object detection and image
classification neural networks, including AlexNet, DetectNet, Goo-
gLeNet and VGGNet, for weed detection in perennial ryegrass
(Lolium perenne L.) and bermudagrass, and found that image clas-
sification DCNNs are well-performed in classifying and discrimi-
nating the images containing weeds growing in turfgrass and
the images containing turfgrass exclusively. For example, VGGNet
achieved an outstanding performance (overall accuracy = 1.00) at
detecting crabgrass (Digitaria spp.), doveweed [Murdannia nudi-
flora (L.) Brenan], dallisgrass and tropical signalgrass [Urochloa dis-
tachya (L.) T.Q. Nguyen] in bermudagrass.33 In more recent
studies, Xie et al.34 and Medrano35 demonstrated the effective-
ness of using object detection neural networks, including Faster
R-CNN, Mask R-CNN and You Only Look Once, for the detection
of nutsedges (Cyperus spp.) and common dandelion (Taraxacum
officinale Web.) in bermudagrass.
Despite all recent success, image classification DCNNs for detect-

ing weeds in turfgrass still present challenges.31–33,36 For example,
Yu et al.31 trained neural networks using a total of 36 000 images
containing 18 000 positive (images containing weeds) and 18 000
negative (images containing turfgrass only) images for detection of
multiple weed species including dollar weed (Hydrocotyle spp.), old
world diamond-flower (Hedyotis cormybosa L. lam.) and Florida
pusely (Richardia scabra L.) growing in bermudagrass. Although the
developed neural networks achieved excellent performance for
weed detection,31 manually classifying a large amount of images
for preparing the training datasets is time-consuming and labor-
intensive. Moreover, previous studies evaluated the use of image
classification DCNNs to detect a single weed species or simulta-
neously detect multiple weed species.31–33,36 None of the previous
studies attempted to train DCNNs to discriminate different weed
species growing in turfgrass. Common dandelion, dallisgrass, purple
nutsedge (Cyperus rotundus L.) and white clover (Trifolium repens L.)
are commonly found in turf landscapes.37,38 Synthetic auxin herbi-
cides (e.g. 2,4-D, dicamba and MCPP) only control broadleaf
weeds,39,40 Acetyl-CoA carboxylase inhibitors (e.g. pinoxaden) only
control grass weeds41,42; and halosulfuron-methyl, an acetolactate
synthase inhibitor, can effectively control purple nutsedge, but pro-
vides erratic control of dallisgrass in bermudagrass turf.43 Effective
discrimination of these weed species may allow the smart sprayer
to spray particular herbicides to control the susceptible weeds and
reduce herbicide use.
Both object detection and image classification neural networks

can be employed as the machine vision system of a smart herbi-
cide sprayer. Object detection neural networks permit the

localization of individual weeds, but the training of object detec-
tion neural networks is labor-intensive and time-consuming
because it requires labeling individual weeds with bounding
boxes.23 Moreover, in most cases, nozzles generate a specific size
of spraying outputs whereas the size of the bounding boxes
around individual weeds varies. Therefore, the outputs of object
detection neural networks cannot be used to directly guide and
control the nozzles. In previous research, image classification neu-
ral networks were only used to identify whether or not the input
images contained weeds and did not attempt to locate weed
infestation zones on the images.31–33,36 The exact position of
weeds in the input image needs to be determined to realize pre-
cision herbicide application with a smart sprayer. In this study,
weed infestation zones (in terms of grid cells) were detected
and localized instead of identifying each individual weed in turf.
Grid cells were created on the input images, and image classifica-
tion neural networks were employed to detect if the grid cells
contained the target weeds. The objectives of this research were
to examine the feasibility of using the proposed method to:
(i) build grid cell maps on the input images and detect precise
locations of weeds by identifying if the grid cells contain weeds;
(ii) classify multiple weed species while growing in turfgrass and
identify the exact location of each weed species in the input
images; and (iii) classify weeds and turfgrass, and identify the loca-
tion of weeds, regardless of weed species, in the input images.

2 MATERIALS AND METHODS
2.1 Overview
Five image classification DCNN architectures, including Densely
Connected Convolutional Networks (DenseNet),44 EfficientNet,45

ResNet,46 RegNet47 and VGGNet,48 were investigated for the capa-
bility of weed detection in bermudagrass. DenseNet alleviates the
vanishing-gradient issue, strengthens feature propagation, pro-
motes feature reuse and decreases the number of parameters.44

It can compute dense, multiscale features from the convolutional
layers of a DCNN-based object classifier.44 EfficientNet is a
straightforward yet efficient compound scaling method that con-
sistently scales network depth, width and resolution with a set of
fixed scaling coefficients.45 ResNet introduced the concept of
residual learning by employing identity-based skip connection
in each residual unit to build very deep networks, which ease
the flow of information across units and can gain accuracy from
considerably increased depth.46 RegNet is capable of training
deeper networks due to its shortcut connection mechanism in
which the gradient can directly flow through the block.47 VGGNet
is composed of 16 weight layers.48 VGGNet utilizes a stack of con-
volution layers with small receptive fields in the first layer.48

ResNet and VGGNet are two of the most classic neural networks
and have been widely used in various research fields. DenseNet
has been developed specifically to improve the declined accuracy
caused by the vanishing gradient issue and is less prone to over-
fitting. RegNet and EfficientNetV2 are the most recent state-of-
the-art neural networks and have not been investigated previ-
ously for detecting weeds in turfgrass. These three types of DCNN
architectures were used for training multi-classifiers or two-classi-
fiers. The multi-classifier neural networks were used for classifying
and discriminating if the grid cells contain common dandelion,
dallisgrass, purple nutsedge or white clover growing in bermuda-
grass, or exclusively contain bermudagrass without weeds; and
the two-classifier was used for discriminating and identifying if
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the grid cells contain weeds (regardless of species) or exclusively
contain bermudagrass without weeds.

2.2 Image acquisition
The training images of common dandelion, dallisgrass and white
clover growing in bermudagrass were acquired at the University
of Georgia Griffin Campus in Griffin, Georgia, USA (33.26°N,
84.28°W), whereas the testing images were taken primarily in
multiple golf courses in Peachtree City, Georgia, USA (33.39°N,
84.59°W). The training images of purple nutsedge were acquired
at sod farms in Jiangning District, Nanjing, Jiangsu, China (31.95°
N, 118.85°E), whereas the testing images were taken in sod farms
in Shuyang, Jiangsu, China (34.12°N, 118.79°E). The training and
testing images of common dandelion (mature stage but before
inflorescence emergence), dallisgrass (mature stage before inflo-
rescence emergence) and white clover (mostly rosette phase)
were acquired in autumn 2018 using a digital camera (DSC-HX1,

SONY®, Cyber-Shot Digital Still Camera; SONY Corp., Minato,
Tokyo, Japan). The training and testing images of purple nutsedge
(mostly three-leaf stage) were acquired in spring 2021 using a dig-
ital camera (DMC-ZS110; Panasonic®, Xiamen, Fujian, China). The
images were adjusted at a height to obtain a ground-sampling
distance of 0.05 cm pixel−1. The training and testing images at a
ratio of 16:9, with a resolution of 1920 × 1080 pixels, were taken
in various light conditions, including clear, cloudy and partially
cloudy weather.

2.3 Image classification and weed detection
The training images containing a single weed species at the orig-
inal resolution of 1920 × 1080 pixels were randomly selected for
populating the training datasets. For each weed species, a total
of 100 images were randomly selected, and each was equally
cropped to 40 subimages of 240 × 216 pixels using IRFANVIEW
(v5.50, Irfan Skijan, Jajce, Bosnia), resulting in a total of 1640,

Table 1. Hyper-parameters used for training the neural networks

Neural network Optimizer Base learning rate Learning rate policy Batch size Training epochs

DenseNet SGD 0.001 LambdaLR 16 24
EfficientNetV2 SGD 0.01 LambdaLR 2 24
ResNet Adam 0.0001 StepLR 16 24
RegNet SGD 0.001 LambdaLR 16 24
VGGNet Adam 0.0001 StepLR 16 24

SGD, stochastic gradient descent.

Table 2. Weed detection validation and testing results when the neural networks were trained with the multi-classifier system

Neural network Weed species

Validation Testing

Precision Recall F1 score Precision Recall F1 score

DenseNet Bermudagrass 0.997 0.997 0.997 0.994 0.983 0.988
Common dandelion 0.989 1.000 0.994 0.974 0.949 0.961
Dallisgrass 0.983 1.000 0.991 0.991 1.000 0.995
Purple nutsedge 1.000 0.993 0.996 0.977 0.992 0.984
White clover 1.000 0.976 0.988 0.983 0.994 0.988

EfficientNetV2 Bermudagrass 1.000 0.992 0.996 0.997 0.974 0.985
Common dandelion 1.000 1.000 1.000 0.974 0.974 0.974
Dallisgrass 0.973 1.000 0.986 0.982 0.991 0.986
Purple nutsedge 1.000 1.000 1.000 0.977 1.000 0.988
White clover 1.000 0.984 0.992 0.972 0.994 0.983

ResNet Bermudagrass 0.987 0.987 0.987 0.991 0.937 0.963
Common dandelion 1.000 1.000 1.000 0.973 0.923 0.947
Dallisgrass 0.967 0.978 0.972 0.982 1.000 0.991
Purple nutsedge 1.000 0.993 0.996 0.984 0.992 0.988
White clover 0.992 0.984 0.988 0.902 0.994 0.946

RegNet Bermudagrass 0.995 0.997 0.996 0.994 0.957 0.975
Common dandelion 0.968 1.000 0.984 0.975 1.000 0.987
Dallisgrass 0.994 0.978 0.986 1.000 0.982 0.991
Purple nutsedge 1.000 0.993 0.996 0.984 1.000 0.992
White clover 0.976 0.976 0.976 0.930 0.994 0.961

VGGNet Bermudagrass 0.995 0.997 0.996 0.994 0.980 0.987
Common dandelion 0.968 1.000 0.984 0.927 0.974 0.950
Dallisgrass 1.000 0.966 0.983 0.991 0.982 0.986
Purple nutsedge 1.000 1.000 1.000 0.969 1.000 0.984
White clover 0.977 0.992 0.984 0.989 0.989 0.989
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Figure 1. Confusion matrices of the multi-classifiers: (a) DenseNet, (b) EfficientNetV2, (c) ResNet, (d) RegNet and (e) VGGNet.
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2010, 2066 and 1492 subimages contained common dandelion,
dallisgrass, purple nutsedge or white clover growing in bermuda-
grass, respectively, and a total of 8113 subimages exclusively
contained bermudagrass.
In order to constitute the training dataset of the multi-classifier

neural networks, a total of 1490, 1810, 1866 and 1342 subimages
(240 × 216 pixels) containing common dandelion, dallisgrass,
purple nutsedge or white clover growing in bermudagrass were
randomly selected and used as the true positive images (labeled
as common dandelion, dallisgrass, purple nutsedge or white clover,
respectively); and a total of 7313 subimages containing bermuda-
grass exclusively were randomly selected and used as the true
negative images (labeled as bermudagrass). The two-classifier
neural networks were used to discriminate turfgrass area contain-
ing weeds from the area without weeds. To constitute the training
dataset of the two-classifier neural networks, the aforementioned
subimages containing weeds (for training the multi-classifier neu-
ral networks) were pooled and used as the true positive images
(labeled as spray), whereas the aforementioned subimages con-
taining bermudagrass only (for training the multi-classifier neural
networks) were used as the true negative images (labeled as
nonspray).
In order to constitute the validation dataset of themulticlassifier

neural networks, a total of 150, 200, 200 and 150 subimages con-
taining common dandelion, dallisgrass, purple nutsedge or white
clover growing in bermudagrass were randomly selected and
used as the true positive images, respectively; and a total of
800 subimages containing bermudagrass only were randomly
selected and used as true negative images. To constitute the test-
ing dataset of the multi-classifier neural networks, a total of five
images (1920 × 1080 pixels) for each weed species were ran-
domly selected, and each image was cropped to 40 subimages
(240 × 216 pixels) using IRFANVIEW, resulting in a total of 39, 109,
126, and 175 subimages containing common dandelion, dallis-
grass, purple nutsedge, or white clover growing in bermudagrass
(true positive images), respectively; and 351 subimages contain-
ing bermudagrass only (true negative images).
In order to constitute the validation dataset of the two-classifier

neural networks, the aforementioned subimages containing com-
mon dandelion, dallisgrass, purple nutsedge or white clover
growing in bermudagrass (used in the validation dataset of the
multi-classifier neural networks) were combined and used as the
true positive images, whereas the aforementioned subimages
containing bermudagrass only (used for the validation of the

multi-classifier neural networks) were used as the true negative
images. To constitute the testing datasets of the two-classifier,
the subimages containing weeds (used in the testing dataset of
the multi-classifier neural networks) were combined and used as
the true positive images, whereas the subimages containing ber-
mudagrass only (used for testing the multi-classifier neural net-
works) were used as the true negative images.
Because we used a relatively small dataset to train the neural

networks, data augmentation techniques, including rotation, flip,
brightness and blur, were performed to enrich the training data-
set. The neural network training and testing were performed on
the Pytorch deep learning framework (available at https://
pytorch.org/; Facebook, San Jose, California, United States). The
training and testing were carried out on a GeForce RTX 2080 Ti
with 64 Gb memory. To ensure a fair comparison between the
results of all deep learning models, default hyperparameters of
each neural network were used and configured (Table 1).
The neural network classification results for the multi-classifier

or two-classifier neural networks were arranged in a binary clas-
sification confusion matrix under four categories including true
positive (TP), false positive (FP), true negative (TN) and false
negative (FN). A TP represents the neural network that correctly
identified the target; an FP represents the neural network that
incorrectly predicted the target; a TN represents the neural net-
work that correctly identified the images without the target;
and an FN represents the neural network that failed to predict
the true target. Precision, recall and F1 score were calculated
according to the confusion matrices to assess neutral network
effectiveness.
Precisionmeasures the capability of the neural network to accu-

rately identify the target and was computed using the following
equation:49

Precision=
TP

TP+FP
ð1Þ

Recall measures the effectiveness of the neural network identified
the target and was computed with the following equation49:

Recall=
TP

TP+FN
ð2Þ

F1 score is the harmonic mean of the precision and recall values
and was calculated using the following equation49:

Table 3. Validation and testing results when the neural networks were trained with the two-classifier system

Neural network Herbicide spraying

Validation Testing

Precision Recall F1 score Precision Recall F1 score

DenseNet nonspray 0.992 0.997 0.994 0.988 0.934 0.960
spray 0.998 0.994 0.996 0.951 0.991 0.971

EfficientNetV2 nonspray 0.989 0.995 0.992 0.988 0.974 0.981
spray 0.996 0.993 0.994 0.980 0.991 0.985

ResNet nonspray 0.997 0.995 0.996 0.988 0.943 0.965
spray 0.996 0.998 0.997 0.957 0.991 0.974

RegNet nonspray 0.992 0.995 0.993 0.972 0.977 0.974
spray 0.996 0.994 0.995 0.982 0.978 0.980

VGGNet nonspray 0.992 0.989 0.990 0.991 0.972 0.981
spray 0.993 0.994 0.993 0.978 0.993 0.985
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F1 score=
2 × precision × recall
precision + recall

ð3Þ

2.4 Inference for weed location
A custom software integrated with OpenCV-Python and the neu-
ral network model was utilized to generate the grid cells on the

input images and infer if the grid cells contained weeds. The cus-
tom software cropped each input image (1920 × 1080 pixels) to a
total of 40 equal-size grid cells (240 × 216 pixels subimages). In a
practical precision sprayer design, the physical size represented
by each grid cell (depending on image resolution and the dis-
tance between the camera and the ground) should be equal to
or slightly smaller than the size of the area in which one nozzle

Figure 2. Common dandelion patch localization using the proposed method: (a) grid mapping of the input image (1920 × 1080 pixels) containing com-
mon dandelion, and (b) the neural network successfully predicted the grid cells (240 × 216 pixels) containing common dandelion while growing in ber-
mudagrass (red) and bermudagrass only.
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is covered. However, higher accuracy should be possible by using
a smaller cell size.50 In this study, each nozzle represents a
240 × 216-pixels control zone in the images.
The trained neural networks were employed to infer if the grid

cells contained weeds. The grid cells were marked as spraying

areas if the inference result indicated they contained weeds. With
a subsequent decision-making system, a binary input decision
could be made to turn off the spray nozzle over all the weed-free
cells (on/off nozzle control). By applying this strategy, each indi-
vidual spray nozzle is controlled separately.

Figure 3. Dallisgrass patch localization using the proposedmethod: (a) grid mapping of the input image (1920 × 1080 pixels) containing dallisgrass, and
(b) the neural network successfully predicted the grid cells (240 × 216 pixels) containing dallisgrass while growing in bermudagrass (red) and
bermudagrass only.

Weed detection in turf www.soci.org

Pest Manag Sci 2022; 78: 4809–4821 © 2022 Society of Chemical Industry. wileyonlinelibrary.com/journal/ps

4815

http://wileyonlinelibrary.com/journal/ps


3 RESULTS
3.1 Weed detection
No obvious differences were observed among the multi-classifier
neural networks for detecting and discriminating different weed
species growing in turfgrass (Table 2). All multi-classifier neural
networks, including DenseNet, EfficientNetV2, ResNet, RegNet

and VGGNet, exhibited excellent F1 scores (≥0.972) with high pre-
cision and recall values in the validation datasets for discriminat-
ing different weed species growing in turfgrass. In general, the
performances of weed detection were slightly reduced in the test-
ing datasets compared to the validation datasets for all neural
networks.

Figure 4. Purple nutsedge patch localization using the proposed method: (a) grid mapping of the input image (1920 × 1080 pixels) containing purple
nutsedge, and (b) the neural network successfully predicted the grid cells (240 × 216 pixels) containing purple nutsedge while growing in bermudagrass
(red) and bermudagrass only.
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Among the evaluated neural networks, the RegNet multi-
classifier exhibited the highest F1 score (0.987) in the testing data-
set when detecting common dandelion growing in turfgrass. For
detecting and discriminating white clover, the F1 score of ResNet
multi-classifier was 0.946 in the testing dataset, whereas the F1
scores of all other multi-classifier neural networks never fell below

0.961. DenseNet, EfficientNetV2 and RegNet showed high F1
scores (≥0.984) in the validation and testing datasets to detect
dallisgrass or purple nutsedge.
A further analysis of the confusionmatrices of multi-classifier neu-

ral networks showed that RegNet and ResNet had low classification
accuracy mainly due to the misclassification of bermudagrass and

Figure 5. White clover patch localization using the proposedmethod: (a) grid mapping of the input image (1920 × 1080 pixels) containing white clover,
and (b) the neural network successfully predicted the grid cells (240 × 216 pixels) containing white clover while growing in bermudagrass (red) and
bermudagrass only.

Weed detection in turf www.soci.org

Pest Manag Sci 2022; 78: 4809–4821 © 2022 Society of Chemical Industry. wileyonlinelibrary.com/journal/ps

4817

http://wileyonlinelibrary.com/journal/ps


white clover (Fig. 1). EfficientNetV2 and VGGNet misclassified three
and four bermudagrass as purple nutsedge, respectively. Neverthe-
less, increasing the number of training images containing such
weed species probably can reduce the occurrence of this type of
misclassification.
All two-classifier neural networks exhibited high F1 scores in the

validation datasets (≥0.990) for discriminating the subimages

containing weeds, regardless of species (spray) and the subi-
mages containing bermudagrass turfgrass exclusively (nonspray)
(Table 3). All two-classifier neural networks had slightly reduced
precision and recalled values in the testing datasets, but the F1
scores never fell below 0.960. The EfficientNetV2 two-classifier
showed the highest F1 scores in the validation and testing data-
sets (≥0.981).

Figure 6. Dallisgrass and white clover patch localization using the proposed method: (a) grid mapping of the input image (1920 × 1080 pixels) contain-
ing dallisgrass and white clover, and (b) the neural network successfully predicted the grid cells (240 × 216 pixels) containing weeds (dallisgrass or white
clover) (red) and bermudagrass only.
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The inference speeds of DenseNet, EfficientNetV2, ResNet,
RegNet and VGGNet, in terms of frames per second (FPS), were
51.98, 31.08, 86.24, 36.15 and 12.46, respectively. Because the
camera acquires images at a resolution of 1920 × 1080 pixels,
the FPS values for the original images were measured using an
NVIDIA GeForce RTX 2080 Ti graphic processing unit by inferring
the subimages with a batch size value of 40. ResNet demonstrated
a significant speed advantage over the other investigated neural
networks, whereas the low inference speed of the VGGNet may
limit its applications.

3.2 Inference for weed location
The images shown in Figs 2, 3, 4 and 5 contain a single weed spe-
cies of common dandelion, dallisgrass, purple nutsedge and
white clover growing in bermudagrass turf. For each input image,
a total of four, 15, 21 and 30 cells of 40 grid cells were marked as
red which represented that they contained common dandelion,
dallisgrass, purple nutsedge or white clover growing in bermuda-
grass turf, respectively; and a total of 36, 25, 19 and 10 cells repre-
sented that they contained bermudagrass exclusively,
respectively.
The images shown in Fig. 6 contain multiple weed species of

common dandelion and white clover growing in bermudagrass.
A total of 30 cells (26 cells contained common dandelion and four
contained white clover) of 40 grid cells were marked as red [Fig. 6
(b)], which represented that they contained weeds, whereas a
total of 10 cells represented that they contained merely
bermudagrass turf.
As shown in Figs 2–6, when the grid cells contain a single weed

species, the present method can be used to identify weed species
within the grid cells and locate the grid cells containing weeds.
When the grid cells contain multiple weed species, the present
method can effectively locate the grid cells containing weeds,
but it cannot accurately identify all weed species within the grid
cells.
The exact grid cells on the input images containing weeds are

located with x,y coordinates. Afterward, only the nozzles corre-
sponding to those cells infested with weeds are turned on, thus
realizing a smart sensing and spraying system.

4 DISCUSSION
In previous research, image classification neural networks demon-
strated excellent performances for detecting images containing
weeds growing in turfgrass.31,33 DenseNet, EfficientNetV2, ResNet
and RegNet previously had not been investigated for detecting
weeds growing in turfgrass. In the present research, these neural
networks exhibited similar performances for detecting weeds
growing in turfgrass compared to VGGNet.
The grid cells were created on the input images, and image clas-

sification neural networks were employed to detect if the grid
cells contained the target weeds. When image classification neu-
ral networks are utilized in the machine vision subsystem of the
smart sprayers, herbicides need to be delivered using the nozzles
that can generate the same or larger spraying outputs to cover
the grid cells. By utilizing this strategy, we could realize precision
herbicide application so long as we can detect the presence/
absence of the target weeds within grid cells.
It should be noted that only four weed species were evaluated

in the present study. Although the neural networks achieved high
classification rates withmulti-classifier neural networks, more pos-
itive images of the training dataset comprising a greater diversity

of weed species are highly desired. Increasing training image
quantities probably can increase the performance of weed dis-
crimination; however, expanding the training and testing images
to include more weed species, especially morphologically similar
weeds, may reduce classification performance. The inclusion of
the neural networks to have a wider variety of weed species with
similar morphological features needs to be the next immediate
step of this study.
Yu et al.32 trained a neural network for detecting common dan-

delion, ground ivy (Glechoma hederacea L.) and spotted spurge
(Euphorbia maculata L.) growing in perennial ryegrass using
binary classification. The authors found that the ratios of positive
and negative images in the training dataset affected the perfor-
mances of the neural networks for weed detection. Recently,
Zhuang et al.51 reported that increasing training image sizes from
200 × 200 pixels to 400 × 400 pixels increased the F1 scores of
DenseNet and ResNet, but generally decreased those of AlexNet
and VGGNet for the detection of broadleaf weed seedlings grow-
ing in wheat (Triticum aestivum L.). However, the authors noted
that increasing training image numbers increased classification
accuracy, diminishing the differences in training image sizes.
Additional research is needed to investigate the impacts of the
weed species ratios in the true positive images when training neu-
ral networks for weed detection. In addition, the implications of
training image sizes and quantities on the performance of neural
networks for weed detection in turfgrass might need to be evalu-
ated in order to improve the precision and recall further, and to
enhance the overall accuracy of weed detection.

5 CONCLUSION
In summary, the developed multi-classifier neural networks can
effectively detect and discriminate between subimages contain-
ing multiple weed species growing in turfgrass or containing turf-
grass exclusively. The developed two-classifier neural networks
can effectively detect and discriminate between subimages con-
taining weeds (regardless of weed species) and those containing
turfgrass only. This is the first study attempting to locate weeds
using image classification neural networks. The developed multi-
classifier neural networks used in conjunction with the proposed
method can effectively identify and locate the grid cells containing
common dandelion, dallisgrass, purple nutsedge or white clover
growing in turfgrass. The developed two-classifier neural networks
can effectively identify and locate the grid cells containing weeds
growing in turfgrass, regardless of weed species. The proposed
method for classifying, detecting and localizingweeds can be used
in a machine vision subsystem with an automatic herbicide
sprayer to create a smart sensing and spraying system.
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